We investigated timing and hemispheric balance of motor cortex activation when kinetically similar speech and non-speech mouth movements and sequences of such movements were triggered by visually presented letter- and symbol-strings. As an index of motor cortex activation, we used magnetoencephalographic recording of task-related change of precentral 20 Hz (16-24 Hz) activity. Suppression of the 20 Hz rhythm revealed pre-movement activation in the face representation areas that was tied to visual instruction, not movement onset. The 20 Hz rhythm remained suppressed throughout the preparation and execution of mouth movements and was followed by post-movement rebound. Left hemisphere preceded the right at the onset and offset of the suppression, similarly for isolated and sequential speech and non-speech movements. Pattern of task-related change in 20 Hz activity was otherwise symmetrical. In the face areas, the overall modulation of 20 Hz activity increased with sequence length and motor demands. Hand representation areas showed also weak reactivity, with systematically larger modulation of 20 Hz activity for non-speech than speech movements. Our results suggest an active role for the motor cortex in cognitive control of visually triggered mouth movements, not limited to movement execution. © The Author 2005. Published by Oxford University Press. All rights reserved.
CITATION STYLE
Saarinen, T., Laaksonen, H., Parviainen, T., & Salmelin, R. (2006). Motor cortex dynamics in visuomotor production of speech and non-speech mouth movements. Cerebral Cortex, 16(2), 212–222. https://doi.org/10.1093/cercor/bhi099
Mendeley helps you to discover research relevant for your work.