Multiphysics computational modeling in cartilage tissue engineering

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A common technique for in vitro cartilage regeneration is to seed a porous matrix with cartilage cells and to culture the construct in static conditions or under medium perfusion in a bioreactor. An essential step toward the development of functional cartilage is to understand and control the tissue growth phenomenon in such systems. The growth process depends on various space- and time-varying biophysical variables of the environment surrounding the cartilage cells, primarily mass transport and mechanical variables, all involved in the cell biological response. Moreover, the growth process is inherently multiscale, since cell size (10 μm), scaffold pore size (100 μm), and cellular construct size (10 mm) pertain to three separate spatial scales. To obtain a quantitative understanding of cartilage growth in this complex multiphysics and multiscale system, advanced mathematical models and efficient scientific computing techniques have been developed. In this chapter, we discuss the existing knowledge in this field and we present the most recent advancements for the numerical simulation of cartilage tissue engineering.

Cite

CITATION STYLE

APA

Raimondi, M. T., Causin, P., Laganà, M., Zunino, P., & Sacco, R. (2013). Multiphysics computational modeling in cartilage tissue engineering. In Studies in Mechanobiology, Tissue Engineering and Biomaterials (Vol. 10, pp. 267–285). Springer. https://doi.org/10.1007/8415_2011_112

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free