Hyperspectral image data are widely used in real life because it contains rich spectral and spatial information. Hyperspectral image classification is to distinguish different functions based on different features. The computer performs quantitative analysis through the captured image and classifies each pixel in the image. However, the traditional deep learning-based hyperspectral image classification technology, due to insufficient spatial-spectral feature extraction, too many network layers, and complex calculations, leads to large parameters and optimizes hyperspectral images. For this reason, I proposed the I3D-CNN model. The number of classification parameters is large, and the network is complex. This method uses hyperspectral image cubes to directly extract spectral-spatial coupling features, adds depth separable convolution to 3D convolution to reextract spatial features, and extracts the parameter amount and calculation time at the same time. In addition, the model removes the pooling layer to achieve fewer parameters, smaller model scale, and easier training effects. The performance of the I3D-CNN model on the test datasets is better than other deep learning-based methods after comparison. The results show that the model still exhibits strong classification performance, reduces a large number of learning parameters, and reduces complexity. The accuracy rate, average classification accuracy rate, and kappa coefficient are all stable above 95%.
CITATION STYLE
Haizhong, Q. (2021). I3D: An Improved Three-Dimensional CNN Model on Hyperspectral Remote Sensing Image Classification. Security and Communication Networks, 2021. https://doi.org/10.1155/2021/5217578
Mendeley helps you to discover research relevant for your work.