DNA damage and S phase-dependent E2F1 stabilization requires the cIAP1 E3-ubiquitin ligase and is associated with K63-poly-ubiquitination on lysine 161/164 residues

19Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or during the S phase of cell cycle, as revealed by cyclin A silencing, is associated with K63-poly-ubiquitinylation of E2F1 on lysine 161/164 residues and involves cIAP1. Our results reveal an additional level of regulation of the stability and the activity of E2F1 by a non-degradative K63-poly-ubiquitination and uncover a novel function for the E3-ubiquitin ligase cIAP1.

Cite

CITATION STYLE

APA

Glorian, V., Allègre, J., Berthelet, J., Dumetier, B., Boutanquoi, P. M., Droin, N., … Dubrez, L. (2017). DNA damage and S phase-dependent E2F1 stabilization requires the cIAP1 E3-ubiquitin ligase and is associated with K63-poly-ubiquitination on lysine 161/164 residues. Cell Death and Disease, 8(5). https://doi.org/10.1038/CDDIS.2017.222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free