Cells in the mucosal barrier are equipped to sense and respond to microbes in the lumen and translate this molecular information into signals that can reach local or distant sites. The interaction of P-fimbriated Escherichia coli with human uroepithelial cells is a model to study the molecular mechanism of epithelial cell activation by mucosal pathogens. Here, we examine the role of lipopolysaccharide (LPS) as a co-stimulatory molecule in epithelial cell activation by P-fimbriated E. coli. P-fimbriated clinical isolates or recombinant strains were shown to trigger a fimbriae-dependent epithelial cell cytokine response. Mutational inactivation of the msbB sequences that control lipid A myristoylation drastically impaired monocyte stimulation but not epithelial responses to P-fimbriated bacteria. Polymyxin B or bactericidal/permeability increasing factor (BPI) neutralized the effects of lipid A in the monocyte assay, but did not reduce epithelial responses. Finally, isolated LPS of the smooth, rough and deep rough chemotypes were poor epithelial cell activators. The cells were shown to lack surface CD14 or CD14 mRNA as well as the CD14 co-receptor function and were also very poor LPS responders in the presence of human serum. These results demonstrate that epithelial cell responses to P-fimbriated E. coli are CD14 and LPS independent, and suggest that attaching pathogens can overcome the LPS unresponsiveness of epithelial cells by fimbriae-dependent activation mechanisms.
CITATION STYLE
Hedlund, M., Wachtler, C., Johansson, E., Hang, L., Somerville, J. E., Darveau, R. P., & Svanborg, C. (1999). P fimbriae-dependent, lipopolysaccharide-independent activation of epithelial cytokine responses. Molecular Microbiology, 33(4), 693–703. https://doi.org/10.1046/j.1365-2958.1999.01513.x
Mendeley helps you to discover research relevant for your work.