Background: Chemoresistance acquisition may influence cancer cell biology. Here, bioinformatics analysis of gene expression data was used to identify chemoresistance-associated changes in neuroblastoma biology. Results: Bioinformatics analysis of gene expression data revealed that expression of angiogenesis-associated genes significantly differs between chemosensitive and chemoresistant neuroblastoma cells. A subsequent systematic analysis of a panel of 14 chemosensitive and chemoresistant neuroblastoma cell lines in vitro and in animal experiments indicated a consistent shift to a more pro-angiogenic phenotype in chemoresistant neuroblastoma cells. The molecular mechanims underlying increased pro-angiogenic activity of neuroblastoma cells are individual and differ between the investigated chemoresistant cell lines. Treatment of animals carrying doxorubicin-resistant neuroblastoma xenografts with doxorubicin, a cytotoxic drug known to exert anti-angiogenic activity, resulted in decreased tumour vessel formation and growth indicating chemoresistance-associated enhanced pro-angiogenic activity to be relevant for tumour progression and to represent a potential therapeutic target. Conclusion: A bioinformatics approach allowed to identify a relevant chemoresistance-associated shift in neuroblastoma cell biology. The chemoresistance-associated enhanced pro-angiogenic activity observed in neuroblastoma cells is relevant for tumour progression and represents a potential therapeutic target. © 2009 Michaelis et al; licensee BioMed Central Ltd.
CITATION STYLE
Michaelis, M., Klassert, D., Barth, S., Suhan, T., Breitling, R., Mayer, B., … Cinatl, J. (2009). Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells. Molecular Cancer, 8, 80. https://doi.org/10.1186/1476-4598-8-80
Mendeley helps you to discover research relevant for your work.