New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias

N/ACitations
Citations of this article
110Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Within the complex metazoan phylogeny, the relationships of the three lophophorate lineages, ectoprocts, brachiopods and phoronids, are particularly elusive. To shed further light on this issue, we present phylogenomic analyses of 196 genes from 58 bilaterian taxa, paying particular attention to the influence of compositional heterogeneity. Results: The phylogenetic analyses strongly support the monophyly of Lophophorata and a sister-group relationship between Ectoprocta and Phoronida. Our results contrast previous findings based on rDNA sequences and phylogenomic datasets which supported monophyletic Polyzoa (= Bryozoa sensu lato) including Ectoprocta, Entoprocta and Cycliophora, Brachiozoa including Brachiopoda and Phoronida as well as Kryptrochozoa including Brachiopoda, Phoronida and Nemertea, thus rendering Lophophorata polyphyletic. Our attempts to identify the causes for the conflicting results revealed that Polyzoa, Brachiozoa and Kryptrochozoa are supported by character subsets with deviating amino acid compositions, whereas there is no indication for compositional heterogeneity in the character subsets supporting the monophyly of Lophophorata. Conclusion: Our results indicate that the support for Polyzoa, Brachiozoa and Kryptrochozoa gathered so far is likely an artifact caused by compositional bias. The monophyly of Lophophorata implies that the horseshoe-shaped mesosomal lophophore, the tentacular feeding apparatus of ectoprocts, phoronids and brachiopods is, indeed, a synapomorphy of the lophophorate lineages. The same may apply to radial cleavage. However, among phoronids also spiral cleavage is known. This suggests that the cleavage pattern is highly plastic and has changed several times within lophophorates. The sister group relationship of ectoprocts and phoronids is in accordance with the interpretation of the eversion of a ventral invagination at the beginning of metamorphosis as a common derived feature of these taxa. © 2013 Nesnidal et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Nesnidal, M. P., Helmkampf, M., Meyer, A., Witek, A., Bruchhaus, I., Ebersberger, I., … Hausdorf, B. (2013). New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evolutionary Biology, 13(1). https://doi.org/10.1186/1471-2148-13-253

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free