Room Temperature Uniaxial Magnetic Anisotropy Induced By Fe-Islands in the InSe Semiconductor Van Der Waals Crystal

6Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The controlled manipulation of the spin and charge of electrons in a semiconductor has the potential to create new routes to digital electronics beyond Moore's law, spintronics, and quantum detection and imaging for sensing applications. These technologies require a shift from traditional semiconducting and magnetic nanostructured materials. Here, a new material system is reported, which comprises the InSe semiconductor van der Waals crystal that embeds ferromagnetic Fe-islands. In contrast to many traditional semiconductors, the electronic properties of InSe are largely preserved after the incorporation of Fe. Also, this system exhibits ferromagnetic resonances and a large uniaxial magnetic anisotropy at room temperature, offering opportunities for the development of functional devices that integrate magnetic and semiconducting properties within the same material system.

Cite

CITATION STYLE

APA

Moro, F., Bhuiyan, M. A., Kudrynskyi, Z. R., Puttock, R., Kazakova, O., Makarovsky, O., … Patanè, A. (2018). Room Temperature Uniaxial Magnetic Anisotropy Induced By Fe-Islands in the InSe Semiconductor Van Der Waals Crystal. Advanced Science, 5(7). https://doi.org/10.1002/advs.201800257

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free