A set of phenomena known as crowding reveal peripheral vision's vulnerability in the face of clutter. Crowding is important both because of its ubiquity, making it relevant for many real-world tasks and stimuli, and because of the window it provides onto mechanisms of visual processing. Here we focus on models of the underlying mechanisms. This review centers on a popular class of models known as pooling models, as well as the phenomenology that appears to challenge a pooling account. Using a candidate high-dimensional pooling model, we gain intuitions about whether a pooling model suffices and reexamine the logic behind the pooling challenges. We show that pooling mechanisms can yield substitution phenomena and therefore predict better performance judging the properties of a set versus a particular item. Pooling models can also exhibit some similarity effects without requiring mechanisms that pool at multiple levels of processing, and without constraining pooling to a particular perceptual group. Moreover, we argue that other similarity effects may in part be due to noncrowding influences like cuing. Unlike lowdimensional straw-man pooling models, highdimensional pooling preserves rich information about the stimulus, which may be sufficient to support highlevel processing. To gain insights into the implications for pooling mechanisms, one needs a candidate highdimensional pooling model and cannot rely on intuitions from low-dimensional models. Furthermore, to uncover the mechanisms of crowding, experiments need to separate encoding from decision effects. While future work must quantitatively examine all of the challenges to a high-dimensional pooling account, insights from a candidate model allow us to conclude that a highdimensional pooling mechanism remains viable as a model of the loss of information leading to crowding.
CITATION STYLE
Rosenholtz, R., Yu, D., & Keshvari, S. (2019). Challenges to pooling models of crowding: Implications for visual mechanisms. Journal of Vision, 19(7), 15. https://doi.org/10.1167/19.7.15
Mendeley helps you to discover research relevant for your work.