Identification and Characterization of MicroRNAs by High Through-Put Sequencing in Mesenchymal Stem Cells and Bone Tissue from Mice of Age-Related Osteoporosis

23Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

The functional deficiencies of bone marrow-derived mesenchymal stem cells (MSCs) may contribute to the aging process and age-related diseases, such as osteoporosis. Although it has been reported that microRNAs (miRNAs) played an important role in mechanisms of gene regulation of aging, and their expression profiles in MSCs osteogenic differentiation were established in recent years, but it is still elusive for the dynamic patterns of miRNAs in aging process. Importantly, the miRNAs in aged bone tissue had not been yet reported so far. Here, we combined high through-put sequencing with computational techniques to detect miRNAs dynamics in MSCs and bone tissue of age-related osteoporosis. Among the detected miRNAs, 59 identified miRNAs in MSCs and 159 in bone showed significantly differential expressions. And more importantly, there existed 8 up-regulated and 30 down-regulated miRNAs in both MSCs and bone during the aging process, with the majority having a trend of down-regulation. Furthermore, after target prediction and KEGG pathway analysis, we found that their targeted genes were significantly enriched in pathways in cancer, which are complex genetic networks, comprise of a number of age-related pathways. These results strongly suggest that these analyzed miRNAs may be negatively involved in age-related osteoporosis, given that most of them showed a decreased expression, which could lay a good foundation for further functional analysis of these miRNAs in age-related osteoporosis. © 2013 He et al.

Cite

CITATION STYLE

APA

He, X., Zhang, W., Liao, L., Fu, X., Yu, Q., & Jin, Y. (2013). Identification and Characterization of MicroRNAs by High Through-Put Sequencing in Mesenchymal Stem Cells and Bone Tissue from Mice of Age-Related Osteoporosis. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0071895

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free