Under the current global warming trend, wildfire activity is expected to decrease in biomass-limited fire regimes but increase in drought-limited fire regimes with abundant biomass. We examined the effects of the Southern Annular Mode (SAM) on interannual variability in wildfire activity in xeric woodland and temperate rainforest ecosystems across a latitudinal range of 10 in temperate southwestern South America (SSA). Based on 42 fire history sites based on nearly 600 fire-scarred trees (the largest available dataset of annually resolved tree-ring records of fire activity in the Southern Hemisphere), we show that years of widespread fire in both xeric woodland and rainforest ecosystems are associated with positive departures of SAM. The association of positive SAM with increased fire activity is explained by the teleconnection of SAM to spring drought across most of SSA. During the late 20th century, only the rainforest ecosystem shows a strong increase in fire activity, which is consistent both with upward trends in SAM and with warming conditions. We attribute the lack of increased burning in the xeric woodland environment to socioeconomic factors and fire behavior (low severity) that facilitate more effective fire suppression in the xeric woodland habitat. Given projected future increases in SAM and the associated warm-dry trend, wildfire activity in much of SSA is likely to increase during the 21st century. Copyright 2011 by the American Geophysical Union.
CITATION STYLE
Holz, A., & Veblen, T. T. (2011). Variability in the Southern Annular Mode determines wildfire activity in Patagonia. Geophysical Research Letters, 38(14). https://doi.org/10.1029/2011GL047674
Mendeley helps you to discover research relevant for your work.