Status of insecticide resistance in malaria vectors in Kwale County, Coastal Kenya

5Citations
Citations of this article
94Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The strategy for malaria vector control in the context of reducing malaria morbidity and mortality has been the scale-up of long-lasting insecticidal nets to universal coverage and indoor residual spraying. This has led to significant decline in malaria transmission. However, these vector control strategies rely on insecticides which are threatened by insecticide resistance. In this study the status of pyrethroid resistance in malaria vectors and it's implica- tion in malaria transmission at the Kenyan Coast was investigated. Results: Using World Health Organization diagnostic bioassay, levels of phenotypic resistance to permethrin and deltamethrin was determined. Anopheles arabiensis showed high resistance to pyrethroids while Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus showed low resistance and susceptibility, respectively. Anopheles gambiae sensu lato (s.l.) mosquitoes were further genotyped for L1014S and L1014F kdr mutation by real time PCR. An allele frequency of 1.33% for L1014S with no L1014F was detected. To evaluate the implication of pyrethroid resistance on malaria transmission, Plasmodium falciparum infection rates in field collected adult mosquitoes was determined using enzyme linked immunosorbent assay and further, the behaviour of the vectors was assessed by comparing indoor and outdoor proportions of mosquitoes collected. Sporozoite infection rate was observed at 4.94 and 2.60% in An. funestus s.l. and An. gambiae s.l., respectively. A higher density of malaria vectors was collected outdoor and this also corresponded with high Plasmodium infection rates outdoor. Conclusions: This study showed phenotypic resistance to pyrethroids and low frequency of L1014S kdr mutation in An. gambiae s.l. The occurrence of phenotypic resistance with low levels of kdr frequencies highlights the need to investigate other mechanisms of resistance. Despite being susceptible to pyrethroids An. funestus s.l. could be driving malaria infections in the area.

Cite

CITATION STYLE

APA

Kiuru, C. W., Oyieke, F. A., Mukabana, W. R., Mwangangi, J., Kamau, L., & Muhia-Matoke, D. (2018). Status of insecticide resistance in malaria vectors in Kwale County, Coastal Kenya. Malaria Journal, 17(1). https://doi.org/10.1186/s12936-017-2156-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free