The mechanisms responsible for peripheral CD8 T cell tolerance to foreign Ags remain poorly understood. In this study we have characterized the state of CD8 T cell tolerance induced in F5 TCR transgenic mice by multiple peptide injections in vivo. The tolerant state of CD8 T cells is characterized by impaired proliferative responses, increased sensitivity to cell death, and failure to acquire cytotoxic effector function after in vitro antigenic challenge. In vivo monitoring of CD8 T cell proliferation using 5-carboxyfluorescein diacetate succinimidyl ester showed that a large subset of the tolerant T cell population failed to divide in response to peptide. TCR down-regulation could not account for this loss of responsiveness to Ag since recombination-activating gene-1 (RAG-1)−/−F5 CD8 T cell responses were similar to those of RAG-1−/−F5 × RAG-1−/− F1 T lymphocytes, which express lower levels of the transgenic TCR. Analysis of early signal transduction in tolerant CD8 T cells revealed high basal levels of cytoplasmic calcium as well as impaired calcium mobilization and tyrosine phosphorylation after cross-linking of CD3ε and CD8α. Together these data indicate that repeated exposure to soluble antigenic peptide in vivo can induce a state of functional tolerance characterized by defective TCR signaling, impaired proliferation, and increased sensitivity to cell death.
CITATION STYLE
Dubois, P. M., Pihlgren, M., Tomkowiak, M., Van Mechelen, M., & Marvel, J. (1998). Tolerant CD8 T Cells Induced by Multiple Injections of Peptide Antigen Show Impaired TCR Signaling and Altered Proliferative Responses In Vitro and In Vivo. The Journal of Immunology, 161(10), 5260–5267. https://doi.org/10.4049/jimmunol.161.10.5260
Mendeley helps you to discover research relevant for your work.