Fractalkine (FKN/CX3CL1) is a unique member of the chemokine gene family and contains a chemokine domain (CD), a mucin-like stalk, a single transmembrane region, and a short intracellular C terminus. This structural distinction affords FKN the property of mediating capture and firm adhesion of FKN receptor (CX3CR1)-expressing cells under physiological flow conditions. Shed forms of FKN also exist, and these promote chemotaxis of CX3CR1-expressing leukocytes. The goal of the present study was to identify specific residues within the FKN-CD critical for FKN-CX3CR1 interactions. Two residues were identified in the FKN-CD, namely Lys-7 and Arg-47, that are important determinants in mediating an FKN-CX3CR1 interaction. FKN-K7A and FKN-R47A mutants exhibited 30–60-fold decreases in affinity for CX3CR1 and failed to arrest efficiently CX3CR1-expressing cells under physiological flow conditions. However, these mutants had differential effects on chemotaxis of CX3CR1-expressing cells. The FKN-K7A mutant acted as an equipotent partial agonist, whereas the FKN-R47A mutant had marked decreased potency and efficacy in measures of chemotactic activity. These data identify specific structural features of the FKN-CD that are important in interactions with CX3CR1 including steady state binding, signaling, and firm adhesion of CX3CR1-expressing cells.
CITATION STYLE
Harrison, J. K., Fong, AlanM., Swain, PeterA. W., Chen, S., Yu, Y.-ReiA., Salafranca, M. N., … Patel, D. D. (2001). Mutational Analysis of the Fractalkine Chemokine Domain. Journal of Biological Chemistry, 276(24), 21632–21641. https://doi.org/10.1074/jbc.m010261200
Mendeley helps you to discover research relevant for your work.