Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells

21Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Proton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.

Cite

CITATION STYLE

APA

Meyer, Q., Yang, C., Cheng, Y., & Zhao, C. (2023, December 1). Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochemical Energy Reviews. Springer. https://doi.org/10.1007/s41918-023-00180-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free