Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251

34Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Glioblastoma multiforme (GBM) carries a dismal prognosis primarily due to its aggressive proliferation in the brain regulated by complex molecular mechanisms. One promising molecular target in GBM is over-expressed basic fibroblast growth factor (bFGF), which has been correlated with growth, progression, and vascularity of human malignant gliomas. Previously, we reported significant antitumor effects of an adenovirus-vector carrying bFGF small interfering RNA (Ad-bFGF-siRNA) in glioma in vivo and in vitro. However, its mechanisms are unknown. Signal transducer and activator of transcription 3 (STAT3) is constitutively active in GBM and correlates positively with the glioma grades. In addition, as a specific transcription factor, STAT3 serves as the convergent point of various signaling pathways activated by multiple growth factors and/or cytokines. Therefore, we hypothesized that the proliferation inhibition and apoptosis induction by Ad-bFGF-siRNA may result from the interruption of STAT3 phosphorylation. In the current study, we found that in glioma cells U251, Ad-bFGF-siRNA impedes the activation of ERK1/2 and JAK2, but not Src, decreases IL-6 secretion, reduces STAT3 phosphorylation, decreases the levels of downstream molecules CyclinD1 and Bcl-xl, and ultimately results in the collapse of mitochondrial membrane potentials as well as the induction of mitochondrial-related apoptosis. Our results offer a potential mechanism for using Ad-bFGF-siRNA as a gene therapy for glioma. To our knowledge, it is the first time that the bFGF knockdown using adenovirus-mediated delivery of bFGF siRNA and its potential underlying mechanisms are reported. Therefore, this finding may open new avenues for developing novel treatments against GBM. © 2011 Liu et al; licensee BioMed Central Ltd.

Author supplied keywords

Cite

CITATION STYLE

APA

Liu, J., Xu, X., Feng, X., Zhang, B., & Wang, J. (2011). Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251. Journal of Experimental and Clinical Cancer Research, 30(1). https://doi.org/10.1186/1756-9966-30-80

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free