Auditory input enhances somatosensory encoding and tactile goal-directed behavior

17Citations
Citations of this article
87Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The capacity of the brain to encode multiple types of sensory input is key to survival. Yet, how neurons integrate information from multiple sensory pathways and to what extent this influences behavior is largely unknown. Using two-photon Ca2+ imaging, optogenetics and electrophysiology in vivo and in vitro, we report the influence of auditory input on sensory encoding in the somatosensory cortex and show its impact on goal-directed behavior. Monosynaptic input from the auditory cortex enhanced dendritic and somatic encoding of tactile stimulation in layer 2/3 (L2/3), but not layer 5 (L5), pyramidal neurons in forepaw somatosensory cortex (S1). During a tactile-based goal-directed task, auditory input increased dendritic activity and reduced reaction time, which was abolished by photoinhibition of auditory cortex projections to forepaw S1. Taken together, these results indicate that dendrites of L2/3 pyramidal neurons encode multisensory information, leading to enhanced neuronal output and reduced response latency during goal-directed behavior.

Cite

CITATION STYLE

APA

Godenzini, L., Alwis, D., Guzulaitis, R., Honnuraiah, S., Stuart, G. J., & Palmer, L. M. (2021). Auditory input enhances somatosensory encoding and tactile goal-directed behavior. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24754-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free