Using gas chromatography, data analysis is performed on a dataset consisting of 486 retention indices, 27 standards (ramified alkanes, aliphatic alcohols, and aromatic compounds), 6 pure and binary stationary phases, and three temperatures. The behavior of the pure stationary phases (OV-3, OV-225, OV-61-OH, and OV-1701-OH) and the binary stationary phases (OV-3/OV-225 and OV-61-OH/OV-1701-OH) at different temperatures (60°C100°C) is investigated with factor and topological analysis. The influence of temperature and the nature of the mixed stationary phases on the retention indices is studied by correspondence factor analysis (CFA). The non-additivity of the retention properties of the pure phases used as mixed phases is clearly established by CFA. The topological analysis of the substituent's effect is investigated with a DARC/PELCO procedure and shows the particular influence of the stationary phase composition on the retention. The substituent effect is measured for the pure and binary stationary phases at various temperatures. The evolution of the substituent effect from the pure stationary phases to the binary phases is discussed. © 2012 The Author.
CITATION STYLE
Bouzouane, S., Righezza, M., & Touabet, A. (2012). Chemometric study of retention on binary stationary phases in gas chromatography. Journal of Chromatographic Science, 50(2), 137–144. https://doi.org/10.1093/chromsci/bmr030
Mendeley helps you to discover research relevant for your work.