Eukaryotic genes are regulated by multivalent transcription factor complexes. Through cooperative self-assembly, these complexes perform nonlinear regulatory operations involved in cellular decision-making and signal processing. In this study, we apply this design principle to synthetic networks, testing whether engineered cooperative assemblies can program nonlinear gene circuit behavior in yeast. Using a model-guided approach, we show that specifying the strength and number of assembly subunits enables predictive tuning between linear and nonlinear regulatory responses for single- and multi-input circuits. We demonstrate that assemblies can be adjusted to control circuit dynamics. We harness this capability to engineer circuits that perform dynamic filtering, enabling frequency-dependent decoding in cell populations. Programmable cooperative assembly provides a versatile way to tune the nonlinearity of network connections, markedly expanding the engineerable behaviors available to synthetic circuits.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Bashor, C. J., Patel, N., Choubey, S., Beyzavi, A., Kondev, J., Collins, J. J., & Khalil, A. S. (2019). Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science, 364(6440), 593–597. https://doi.org/10.1126/science.aau8287