Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants

100Citations
Citations of this article
78Readers
Mendeley users who have this article in their library.

Abstract

Cell cycle arrest in response to DNA damage depends upon coordinated interactions between DNA repair and checkpoint pathways. Here we examine the role of DNA repair and checkpoint genes in responding to unprotected telomeres in budding yeast cdc13-1 mutants. We show that Exo1 is unique among the repair genes tested because like Rad9 and Rad24 checkpoint proteins, Exo1 inhibits the growth of cdc13-1 mutants at the semipermissive temperatures. In contrast Mre11, Rad50, Xrs2, and Rad27 contribute to the vitality of cdc13-1 strains grown at permissive temperatures, while Din7, Msh2, Nuc1, Rad2, Rad52, and Yen1 show no effect. Exo1 is not required for cell cycle arrest of cdc13-1 mutants at 36° but is required to maintain arrest. Exo1 affects but is not essential for the production of ssDNA in subtelomeric Y′ repeats of cdc13-1 mutants. However, Exo1 is critical for generating ssDNA in subtelomeric X repeats and internal single-copy sequences. Surprisingly, and in contrast to Rad24, Exo1 is not essential to generate ssDNA in X or single-copy sequences in cdc13-1 rad9Δ mutants. We conclude that Rad24 and Exo1 regulate nucleases with different properties at uncapped telomeres and propose a model to explain our findings.

Cite

CITATION STYLE

APA

Zubko, M. K., Guillard, S., & Lydall, D. (2004). Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics, 168(1), 103–115. https://doi.org/10.1534/genetics.104.027904

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free