Glycidyl methacrylate (GMA) was grafted onto poly (lactic acid) (PLA) by melt mixing in internal mixer using dicumyl peroxide (DCP) as an initiator. The results from proton nuclear magnetic resonance (1H-NMR) and Fourier transform infrared (FTIR) spectroscopy indicated that the grafting reaction of GMA onto PLA took place successfully. The impact strength of PLA-g-GMA was significantly higher than that of pure PLA. The crystallinity of PLA, obtained from differential scanning calorimetry (DSC), decreased after grafting. In order to obtain the optimal mixing conditions, the mixing time was varied into 7, 10 and 14 min. The optimum mixing time of 10 min was found to give the optimum mechanical properties of glycidyl methacrylate grafted poly (lactic acid) (PLA-g-GMA). However, the mixing time played no important role in impact behavior of PLA-g-GMA. In addition, the highest crystallinity was obtained with the PLA-g-GMA prepared with the mixing time of 7 min.
CITATION STYLE
Thanh, N. C., Ruksakulpiwat, C., & Ruksakulpiwat, Y. (2015). Effect of Melt Mixing Time in Internal Mixer on Mechanical Properties and Crystallization Behavior of Glycidyl Methacrylate Grafted Poly (Lactic Acid). Journal of Materials Science and Chemical Engineering, 03(07), 102–107. https://doi.org/10.4236/msce.2015.37013
Mendeley helps you to discover research relevant for your work.