The phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, 3-mercaptopicolinic acid (3-MPA), induces myogenic differentiation in C2C12 cells

8Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme with a cytosolic (Pck1/PEPCK-C) and mitochondrial (Pck2/PEPCK-M) isoform. Here we investigate the effect of 3-mercaptopicolinic acid (3-MPA), a PEPCK inhibitor, on C2C12 muscle cells. We report that Pck2 mRNA is 50–5000-fold higher than Pck1 during C2C12 myogenesis, indicating Pck2 is the predominant PEPCK isoform. C2C12 cell proliferation was inhibited in a dose-dependent manner following 48 h 3-MPA treatment (0.01–1 mM). C2C12 myogenic differentiation was significantly induced following 3-MPA treatment (0.25, 0.5, 1 mM) from day 0 of differentiation, demonstrated by increased creatine kinase activity, fusion index and myotube diameter; likewise, the myosin heavy chain (MyHC)-IIB isoform (encoded by Myh4) is an indicator of hypertrophy, and both porcine MYH4-promoter activity and endogenous Myh4 mRNA were also significantly induced. High doses (0.5 and/or 1 mM) of 3-MPA reduced mRNA expression of Pck2 and genes associated with serine biosynthesis (Phosphoglycerate dehydrogenase, Phgdh; phosphoserine aminotransferase-1, Psat1) following treatment from days 0 and 4. To conclude, as Pck2/PEPCK-M is the predominant isoform in C2C12 cells, we postulate that 3-MPA promoted myogenic differentiation through the inhibition of PEPCK-M. However, we were unable to confirm that 3-MPA inhibited PEPCK-M enzyme activity as 3-MPA interfered with the PEPCK enzyme assay, particularly at 0.5 and 1 mM.

Cite

CITATION STYLE

APA

Brearley, M. C., Daniel, Z. C. T. R., Loughna, P. T., Parr, T., & Brameld, J. M. (2020). The phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, 3-mercaptopicolinic acid (3-MPA), induces myogenic differentiation in C2C12 cells. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-79324-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free