Data mining merupakan suatau metode yang baik untuk menangani data skala besar. Performasi menjadi penting dalam metode data mining. Dua metode yang memiliki performasi terbaik diantaranya K-Nearest Neighbor (KNN) dan Random Forest (RF). Artikel ini membahas terkait perbandingan performasi K-NN dan RF. Data yang digunakan pada penelitian ini adalah Iris. Data dibagi menjadi 80% data training dan 20% data testing. Validasi performasi menggunakan nilai akurasi dan F1-Score. Berdasarkan nilai. Berdasarkan hasil yang didapat metode RF lebih baik dibandingkan dengan metode K-NN. Nilai akurasi yang didapat oleh metode RF adalah 1.00 atau 100% dan nilai F1-Score sebesar 1.00.
CITATION STYLE
Rahman, B., Fauzi, F., & Amri, S. (2023). Perbandingan Hasil Klasifikasi Data Iris menggunakan Algoritma K-Nearest Neighbor dan Random Forest. Journal Of Data Insights, 1(1), 19–26. https://doi.org/10.26714/jodi.v1i1.135
Mendeley helps you to discover research relevant for your work.