Smart Artificial Soft Tissue-Application to a Hybrid Simulator for Training of Laryngeal Pacemaker Implantation

4Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Surgical simulators are safe and evolving educational tools for developing surgical skills. In particular, virtual and hybrid simulators are preferred due to their detailedness, customization and evaluation capabilities. To accelerate the revolution of a novel class of hybrid simulators, a Smart Artificial Soft Tissue is presented here, that determines the relative position of conductive surgical instruments in artificial soft tissue by inverse resistance mappings without the need for a fixed reference point. This is particularly beneficial for highly deformable structures when specific target regions need to be reached or avoided. The carbon-black-silicone composite used can be shaped almost arbitrarily and its elasticity can be tuned by modifying the silicone base material. Thus, objective positional feedback for haptically correct artificial soft tissue can be ensured. This is demonstrated by the development of a laryngeal phantom to simulate the implantation of laryngeal pacemaker electrodes. Apart from the position-detecting larynx phantom, the simulator uses a tablet computer for the virtual representation of the vocal folds' movements, in accordance with the electrical stimulation by the inserted electrodes. The possibility of displaying additional information about target regions and anatomy is intended to optimize the learning progress and illustrates the extensibility of hybrid surgical simulators.

Cite

CITATION STYLE

APA

Thurner, T., Esterer, B., Furst, D., Hollensteiner, M., Sandriesser, S., Augat, P., … Schrempf, A. (2023). Smart Artificial Soft Tissue-Application to a Hybrid Simulator for Training of Laryngeal Pacemaker Implantation. IEEE Transactions on Biomedical Engineering, 70(2), 735–746. https://doi.org/10.1109/TBME.2022.3201613

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free