Modeling the supervisory control theory with alloy

2Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Scientific literature reveals that symbolic representation techniques behind some formal methods are attractive to synthesize parts or verify properties of large discrete event systems. They involve, however, complex encoding schemata and fine tuning heuristic parameters in order to translate specific problems into efficient BDD or SAT-based representations. This approach may be too costly when the main goal is to explore a theory, understand by simulation its underlying concepts and computation procedures, and conduct experiments by applying them to small problems. Based on previous work with Alloy on the synthesis of observers and nonblocking supervisors of a system organized hierarchically with a flat state space estimated to 10 31 states, this paper investigates more deeply issues raised with its use in the modeling and prototyping of the supervisory control theory, including the application of models to practical problems. This study was conducted in a broader context than just hierarchical control since it embraces various variants of this theory. © 2012 Springer-Verlag.

Cite

CITATION STYLE

APA

Fraikin, B., Frappier, M., & St-Denis, R. (2012). Modeling the supervisory control theory with alloy. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7316 LNCS, pp. 94–107). https://doi.org/10.1007/978-3-642-30885-7_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free