FFLO state in 1-, 2- And 3-dimensional optical lattices combined with a non-uniform background potential

60Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We study the phase diagram of an imbalanced two-component Fermi gas in optical lattices of 1-3 dimensions (1D-3D), considering the possibilities of the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), Sarma/breached pair, BCS and normal states as well as phase separation, at finite and zero temperatures. In particular, phase diagrams with respect to average chemical potential and the chemical potential difference of the two components are considered, because this gives the essential information about the shell structures of phases that will occur in the presence of an additional (harmonic) confinement. These phase diagrams in ID, 2D and 3D show in a striking way the effect of Van Hove singularities on the FFLO state. Although we focus on population imbalanced gases, the results are relevant also for the (effective) mass imbalanced case. We demonstrate by LDA calculations that various shell structures such as normal-FFLO-BCS-FFLO-normal, or FFLO-normal, are possible in presence of a background harmonic trap. The phases are reflected in noise correlations: especially in 1D the unpaired atoms leave a clear signature of the FFLO state as a zero-correlation area ('breach') within the Fermi sea. This strong signature occurs both for a ID lattice as well as for a ID continuum. We also discuss the effect of Hartree energies and the Gorkov correction on the phase diagrams. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Cite

CITATION STYLE

APA

Koponen, T. K., Paananen, T., Martikainen, J. P., Bakhtiari, M. R., & Törmä, P. (2008). FFLO state in 1-, 2- And 3-dimensional optical lattices combined with a non-uniform background potential. New Journal of Physics, 10. https://doi.org/10.1088/1367-2630/10/4/045014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free