MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in Murine Model of Allergic Rhinitis by Targeting Nlrp3

67Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Emerging evidences indicate that post-transcriptional regulation by microRNAs is critical in allergic rhinitis (AR) pathogenesis. MircroRNA-133b (miR-133b) was recently suggested as a potential predictor of AR. However, the in vivo effect of miR-133b on AR is unclear. Methods: AR model was established in BALB/c mice by intraperitoneal sensitization and intranasal challenge with ovalbumin (OVA). MiR-133b agomir was then intranasally administrated to mice after OVA challenge for another 7 days. The symptom of nasal rubbing and sneezing were recorded after the last OVA challenge. Nasal mucosa tissues and serum were collected. MiR-133b expression, serum OVA-specific immunoglobulin E (IgE) concentration, proinflammatory cytokines (TNF-α, IL-4, IL-5, IL-10 and IFN-γ) levels, and Nlrp3 inflammasome activation were measured by RT-PCR, ELISA, western blotting or immunohistochemistry, respectively. Histopathologic changes were evaluated using hematoxylin and eosin and Sirius red staining. The luciferase activity and protein expression of Nlrp3 were also determined. Results: MiR-133b expression was significantly decreased in nasal mucosa of AR mice, which was restored by nasal administration with miR-133b agomir. Upregulation of miR-133b markedly reduced the concentration of OVA-specific IgE, the frequencies of nasal rubbing and sneezing, and the levels of cytokines (TNF-α, IL-4, IL-5 and IFN-γ). Levels of IL-4, IL-5, IL-10 and IFN-γ produced by cervical lymph node cells were significantly lowered in miR-133b agomir-treated mice. Moreover, miR-133b also appeared to strongly attenuate pathological alterations and eosinophils and mast cells infiltration in nasal mucosa. Notably, we demonstrated for the first time that miR-133b negatively regulated Nlrp3 expression through binding with the 3' untranslated region of Nlrp3. Consequently, infection of miR-133b in nasal mucosa remarkably suppressed the Nlrp3 inflammasome activation, as evidenced by reduced Nlrp3, Caspase-1, ASC, IL-18 and IL-1 expressions. Conclusion: MiR-133b alleviates allergic symptom in AR mice by inhibition of Nlrp3 inflammasome-meditated inflammation. These findings provide us an insight into the potential role of miR-133b in relation to AR treatment.

Cite

CITATION STYLE

APA

Xiao, L., Jiang, L., Hu, Q., & Li, Y. (2017). MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in Murine Model of Allergic Rhinitis by Targeting Nlrp3. Cellular Physiology and Biochemistry, 42(3), 901–912. https://doi.org/10.1159/000478645

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free