The aim of this paper is to investigate the boundary layer of ferrofluid flow induced by a permeable stretching sheet. Fluid is electrically non-conducting in the presence of non-uniform magnetic field. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations by applying a similarity transformation. Numerical solutions are obtained by using Maple. The effects of the magnetic field, the Reynolds number and the porosity on the velocity and thermal fields are investigated. The impact of the parameters on the skin friction and the local Nusselt number is numerically examined. The skin friction and heat transfer coefficients are decreasing with enhancing the stretching, the values of porosity and the ferromagnetic parameter.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Bognár, G., & Hriczó, K. (2020). Ferrofluid flow in magnetic field above stretching sheet with suction and injection. Mathematical Modelling and Analysis, 25(3), 461–472. https://doi.org/10.3846/mma.2020.10837