Modelling cholera epidemics: The role of waterways, human mobility and sanitation

132Citations
Citations of this article
197Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We investigate the role of human mobility as a driver for long-range spreading of cholera infections, which primarily propagate through hydrologically controlled ecological corridors. Our aim is to build a spatially explicit model of a disease epidemic, which is relevant to both social and scientific issues. We present a two-layer network model that accounts for the interplay between epidemiological dynamics, hydrological transport and long-distance dissemination of the pathogen Vibrio cholerae owing to host movement, described here by means of a gravity-model approach. We test our model against epidemiological data recorded during the extensive cholera outbreak occurred in the KwaZulu-Natal province of South Africa during 2000-2001. We show that long-range human movement is fundamental in quantifying otherwise unexplained inter-catchment transport of V. cholerae, thus playing a key role in the formation of regional patterns of cholera epidemics. We also show quantitatively how heterogeneously distributed drinking water supplies and sanitation conditions may affect large-scale cholera transmission, and analyse the effects of different sanitation policies. © 2011 The Royal Society.

Cite

CITATION STYLE

APA

Mari, L., Bertuzzo, E., Righetto, L., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., & Rinaldo, A. (2012). Modelling cholera epidemics: The role of waterways, human mobility and sanitation. Journal of the Royal Society Interface, 9(67), 376–388. https://doi.org/10.1098/rsif.2011.0304

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free