Owing to their convenient manufacture, transportation, low energy consumption, and environmental impacts, lightweight cement composites have been applied as building and construction materials. However, its decreased density is associated with a reduction in mechanical strength. In most existing investigations, attempts have been made to improve mechanical behaviours via supplementary cementitious or fibre materials, whereas limited studies have been implemented on the effects of nano additives, especially their synergic influence. In this study, industrial waste fly ash cenosphere (FAC) has been utilized as lightweight aggregate by 73.3% cement weight to fabricate sustainable lightweight cement mortar (LWCM). Carbon nanotubes (CNTs) at a dosage of 0.05%, 0.15%, and 0.45% and nano silica (NS) with the content of 0.2%, 0.6%, and 1.0% by cement weight have been applied as modifying additives. Experiments were carried out to test flexural strength, compressive strength, and water absorption. SEM, TG, and XRD analyses were conducted to evaluate microstructure and hydration characteristics. Based on the outcomes, the inclusion of CNTs and NS can effectively increase flexural and compressive strength and reduce absorbed water weight. The analysis of SEM, TG, and XRD reveals that the binary usage of CNTs and NS can improve pore structure and facilitate hydration reaction.
CITATION STYLE
Du, Y., & Korjakins, A. (2023). Synergic Effects of Nano Additives on Mechanical Performance and Microstructure of Lightweight Cement Mortar. Applied Sciences (Switzerland), 13(8). https://doi.org/10.3390/app13085130
Mendeley helps you to discover research relevant for your work.