In conventional muography observations using two detectors for muon tracking, the accidental coincidence of vertical electromagnetic showers generates identical trajectories to the muon tracks. Although muography has favorable properties, which allow direct density measurements inside a volcano, the measured density is lower than the actual value due to these fortuitous trajectories. We performed muography of Usu volcano, and confirmed that, in comparison with a use of two detectors, background noise levels were reduced by more than one order of magnitude using seven detectors for selecting linear trajectories. The resultant muographic image showed a high-density region underneath the central region of Usu volcano. This picture is consistent with the magma intrusion model proposed in previous studies. To clarify the three-dimensional location and actual size of the detected high-density body, multidirectional muographic measurements are necessary.
CITATION STYLE
Kusagaya, T., & Tanaka, H. K. M. (2015). Muographic imaging with a multi-layered telescope and its application to the study of the subsurface structure of a volcano. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 91(9), 501–510. https://doi.org/10.2183/pjab.91.501
Mendeley helps you to discover research relevant for your work.