Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine

  • Becker J
  • Adams F
  • Khain T
  • et al.
22Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

We evaluate the dynamical stability of a selection of outer solar system objects in the presence of the proposed new solar system member Planet Nine. We use a Monte Carlo suite of numerical N -body integrations to construct a variety of orbital elements of the new planet and evaluate the dynamical stability of eight trans-Neptunian objects (TNOs) in the presence of Planet Nine. These simulations show that some combinations of orbital elements ( ) result in Planet Nine acting as a stabilizing influence on the TNOs, which can otherwise be destabilized by interactions with Neptune. These simulations also suggest that some TNOs transition between several different mean-motion resonances during their lifetimes while still retaining approximate apsidal antialignment with Planet Nine. This behavior suggests that remaining in one particular orbit is not a requirement for orbital stability. As one product of our simulations, we present an a posteriori probability distribution for the semimajor axis and eccentricity of the proposed Planet Nine based on TNO stability. This result thus provides additional evidence that supports the existence of this proposed planet. We also predict that TNOs can be grouped into multiple populations of objects that interact with Planet Nine in different ways: one population may contain objects like Sedna and 2012 VP 113 , which do not migrate significantly in semimajor axis in the presence of Planet Nine and tend to stay in the same resonance; another population may contain objects like 2007 TG 422 and 2013 RF 98 , which may both migrate and transition between different resonances.

Cite

CITATION STYLE

APA

Becker, J. C., Adams, F. C., Khain, T., Hamilton, S. J., & Gerdes, D. (2017). Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine. The Astronomical Journal, 154(2), 61. https://doi.org/10.3847/1538-3881/aa7aa2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free