Regulation of muscle satellite cell activation and chemotaxis by angiotensin II

38Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

Abstract

The role of angiotensin II (Ang II) in skeletal muscle is poorly understood. We report that pharmacological inhibition of Ang II signaling or ablation of the AT1a receptor significantly impaired skeletal muscle growth following myotrauma, in vivo, likely due to impaired satellite cell activation and chemotaxis. In vitro experiments demonstrated that Ang II treatment activated quiescent myoblasts as evidenced by the upregulation of myogenic regulatory factors, increased number of b-gal+, Myf5-LacZ myoblasts and the acquisition of cellular motility. Furthermore, exogenous treatment with Ang II significantly increased the chemotactic capacity of C2C12 and primary cells while AT1a2/2 myoblasts demonstrated a severe impairment in basal migration and were not responsive to Ang II treatment. Additionally, Ang II interacted with myoblasts in a paracrine-mediated fashion as 4 h of cyclic mechanical stimulation resulted in Ang II-induced migration of cocultured myoblasts. Ang II-induced chemotaxis appeared to be regulated by multiple mechanisms including reorganization of the actin cytoskeleton and augmentation of MMP2 activity. Collectively, these results highlight a novel role for Ang II and ACE inhibitors in the regulation of skeletal muscle growth and satellite cell function. © 2010 Johnston et al.

Cite

CITATION STYLE

APA

Johnston, A. P. W., Baker, J., Bellamy, L. M., McKay, B. R., de Lisio, M., & Parise, G. (2010). Regulation of muscle satellite cell activation and chemotaxis by angiotensin II. PLoS ONE, 5(12). https://doi.org/10.1371/journal.pone.0015212

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free