Cutting forces and chip shaping when finish turning of 17-4 ph stainless steel under dry, wet, and mql machining conditions

19Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

This paper analyses three components of total cutting force and chip shape changes when finish turning 17-4 PH (precipitation hardening) stainless steel. A Finite Element Method (FEM) simulation of cutting forces was also performed using the Johnson–Cook constitutive model. The results were compared with those obtained from experimental studies. Variable feeds of 0.05–0.4 mm/rev and depth of cut of 0.2–1.2 mm with a cutting speed of 220 m/min were used. The studies were carried out under dry and wet cooling conditions and with the use of minimum quantity lubrication (MQL). This research was realized based on the Parameter Space Investigation (PSI) method. Statistical analysis of the obtained results was carried out using Statistica-13 software. It was found that the cutting force Fc and feed force Ff depend on the depth of cut and feed, and the passive force Fp depends mainly on the feed. Compared to dry cutting conditions, a reduction of 43% and 39% of the cutting force Fc was achieved for wet machining and MQL machining, respectively. Regardless of the cooling conditions, a favorable chip shape was registered for ap = 1–1.1 mm and f = 0.25–0.3 mm/rev. Compared to the experimental studies, the FEM simulation showed differences of ~13% for the cutting force Fc and of ~36% for the feed force Ff.

Cite

CITATION STYLE

APA

Leksycki, K., Feldshtein, E., Lisowicz, J., Chudy, R., & Mrugalski, R. (2020). Cutting forces and chip shaping when finish turning of 17-4 ph stainless steel under dry, wet, and mql machining conditions. Metals, 10(9), 1–15. https://doi.org/10.3390/met10091187

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free