Exploiting magnetic properties of Fe doping in zirconia: From first-principles simulations to the experimental growth and characterization of thin films

18Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this study we explore, both from theoretical and experimental side, the effect of Fe doping in ZrO2 (ZrO2:Fe). By means of first principles simulation, we study the magnetization density and the magnetic interaction between Fe atoms. We also consider how this is affected by the presence of oxygen vacancies and compare our findings with models based on impurity band [J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)] and carrier mediated magnetic interaction [T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)]. Experimentally, thin films (≈20 nm) of ZrO2:Fe at high doping concentration are grown by atomic layer deposition. We provide experimental evidence that Fe is uniformly distributed in the ZrO2 by transmission electron microscopy and energy dispersive X-ray mapping, while X-ray diffraction evidences the presence of the fluorite crystal structure. Alternating gradient force magnetometer measurements show magnetic signal at room temperature, however, with low magnetic moment per atom. Results from experimental measures and theoretical simulations are compared. © 2013 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Sangalli, D., Cianci, E., Lamperti, A., Ciprian, R., Albertini, F., Casoli, F., … Debernardi, A. (2013). Exploiting magnetic properties of Fe doping in zirconia: From first-principles simulations to the experimental growth and characterization of thin films. European Physical Journal B, 86(5). https://doi.org/10.1140/epjb/e2013-30669-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free