Impacts of Embedded Generation on Distribution Network Behavior

  • Sudhakar P
  • Malaji S
  • Sarvesh B
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

This paper explores the impacts of multiple embedded generators penetration on distribution system behavior. For this rationale, a IEEE-13 bus distribution feeder was modeled and investigates by assimilating different types of embedded generation (EG) sources. Different scenarios were implemented in which WIND, SOFC FUEL CELL, SOLAR and MICRO TURBINE plants were modeled with high variability of load and generation to observe their impacts on system’s protection, unsymmetrical faults also consider observing impacts effectively. To eradicate the impacts on distribution system with presence of EG’s and distribution system undergone in the event of faults, in this paper primarily reverse power due to EG integration is estimated and sensed with reverse power relay, Further two types of Superconducting Fault Current Limiters Passive resonance CB (PRCB) SFCL and Inverse current injection CB (I-CB are proposed and results are compared for amended solution in mitigating fault current magnitude and over voltages, Finally penetrations levels are computed mathematically and All the modeling and simulations were carried out using MATLAB SIMULINK tool.

Cite

CITATION STYLE

APA

Sudhakar, P., Malaji, S., & Sarvesh, B. (2018). Impacts of Embedded Generation on Distribution Network Behavior. International Journal of Reconfigurable and Embedded Systems (IJRES), 7(2), 91. https://doi.org/10.11591/ijres.v7.i2.pp91-103

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free