Extracellular protein toxins contribute to the pathogenesis of a wide variety of Staphylococcus aureus infections. The present study investigated the effects that cell-wall active antibiotics and protein-synthesis inhibitors have on transcription and translation of genes for Panton-Valentine leukocidin, alpha-hemolysin, and toxic-shock syndrome toxin 1, in both methicillin-sensitive and methicillin-resistant S. aureus. Subinhibitory concentrations of nafcillin induced and prolonged mRNA for Panton-Valentine leukocidin, alpha-toxin, and toxic-shock syndrome toxin 1 and increased toxin production. In contrast, clindamycin and linezolid markedly suppressed translation, but not transcription, of toxin genes. These results suggest (1) that protein-synthesis inhibition is an important consideration in the selection of antimicrobial agents to treat serious infections caused by toxin-producing gram-positive pathogens and (2) that, by inducing and enhancing toxin production, inadvertent use of beta-lactam antibiotics to treat methicillin-resistant S. aureus infections may contribute to worse outcomes. © 2006 by the Infectious Diseases Society of America. All rights reserved.
CITATION STYLE
Stevens, D. L., Ma, Y., Salmi, D. B., McIndoo, E., Wallace, R. J., & Bryant, A. E. (2007). Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Journal of Infectious Diseases, 195(2), 202–211. https://doi.org/10.1086/510396
Mendeley helps you to discover research relevant for your work.