This study evaluated the feasibility of continuous biohythane production from rice straw (RS) using an integrated anaerobic bioreactor (IABR) at thermophilic conditions. NaOH/Urea solution was employed as a pretreatment method to enhance and improve biohythane production. Results showed that the maximum specific biohythane yield was 612.5 mL/g VS, including 104.1 mL/g VS for H2 and 508.4 mL/g VS for CH4, which was 31.3% higher than the control RS operation stage. The maximum total chemical oxygen demand (COD) removal stabilized at about 86.8%. COD distribution results indicated that 2% of the total COD (in the feed) was converted into H2, 85.4% was converted to CH4, and 12.6% was retained in the effluent. Furthermore, carbon distribution analysis demonstrated that H2 production only diverted a small part of carbon, and most of the carbon flowed to the CH4 fermentation process. Upon further energy conversion analysis, the maximum value was 166.7%, 31.7 times and 12.8% higher than a single H2 and CH4 production process. This study provides a new perspective on lignocellulose-to-biofuel recovery.
CITATION STYLE
Dong, L., Cao, G., Wang, W., Luo, G., Yang, F., & Ren, N. (2023). Improved Biohythane Production from Rice Straw in an Integrated Anaerobic Bioreactor under Thermophilic Conditions. Microorganisms, 11(2). https://doi.org/10.3390/microorganisms11020474
Mendeley helps you to discover research relevant for your work.