Immune checkpoint inhibitors (ICI) therapy based on programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) has changed the treatment paradigm of advanced non-small cell lung cancer (NSCLC) and improved the survival expectancy of patients. However, it also leads to immune-related adverse events (iRAEs), which result in multiple organ damage. Among them, the most common one with the highest mortality in NSCLC patients treated with ICI is checkpoint inhibitor pneumonitis (CIP). The respiratory signs of CIP are highly coincident and overlap with those in primary lung cancer, which causes difficulties in detecting, diagnosing, managing, and treating. In clinical management, patients with serious CIP should receive immunosuppressive treatment and even discontinue immunotherapy, which impairs the clinical benefits of ICIs and potentially results in tumor recrudesce. Therefore, accurate diagnosis, detailedly dissecting the pathogenesis, and developing reasonable treatment strategies for CIP are essential to prolong patient survival and expand the application of ICI. Herein, we first summarized the diagnosis strategies of CIP in NSCLC, including the classical radiology examination and the rising serological test, pathology test, and artificial intelligence aids. Then, we dissected the potential pathogenic mechanisms of CIP, including disordered T cell subsets, the increase of autoantibodies, cross-antigens reactivity, and the potential role of other immune cells. Moreover, we explored therapeutic approaches beyond first-line steroid therapy and future direction based on targeted signaling pathways. Finally, we discussed the current impediments, future trends, and challenges in fighting ICI-related pneumonitis.
CITATION STYLE
Guo, X., Chen, S., Wang, X., & Liu, X. (2023). Immune-related pulmonary toxicities of checkpoint inhibitors in non-small cell lung cancer: Diagnosis, mechanism, and treatment strategies. Frontiers in Immunology. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2023.1138483
Mendeley helps you to discover research relevant for your work.