The aim of this study is to evaluate the performance of the Global Climate Model (GCM) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) in historical simulations of temperature and precipitation. The goal is to select the best performing GCMs for future projection of temperature and precipitation in the Second Songhua River Basin under multiple shared socioeconomic pathways (SSPs). Interannual variability skill (IVS) and Taylor diagrams are used to evaluate the spatiotemporal performance of GCMs against temperature and precipitation data published by the China Meteorological Science Commons during 1956–2016. In addition, five relatively independent models are selected to simulate the temperature and precipitation for 2021–2050 using Hierarchical Clustering. The selected models are CMCC-ESM2, EC-Earth3-Veg-LR, IPSL-CM6A-LR, MIROC-ES2L, and MPI-ESM1-2-HR. The projected results find that SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios show an increasing trend of future annual mean temperature and precipitation. However, for annual precipitation, there is a mixed state of increase and decrease among different models on the seasonal scale. In general, future temperature and precipitation changes still show a trend of growth and uneven distribution in the Second Songhua River Basin, which may be further accelerated by human activities.
CITATION STYLE
Xiao, H., Zhuo, Y., Sun, H., Pang, K., & An, Z. (2023). Evaluation and Projection of Climate Change in the Second Songhua River Basin Using CMIP6 Model Simulations. Atmosphere, 14(9). https://doi.org/10.3390/atmos14091429
Mendeley helps you to discover research relevant for your work.