Physiological information such as respiratory rate and heart rate in the sleep state can be used to evaluate the health condition of the sleeper. Traditional sleep monitoring systems need body contact and are intrusive, which limits their applicability. Thus, a comfortable sleep biosignals detection system with both high accuracy and low cost is important for health care. In this paper, we design a sleep biosignals detection system based on low-cost piezoelectric ceramic sensors. 18 piezoelectric ceramic sensors are deployed under the mattress to capture the pressure data. The appropriate sensor that captures respiration and heartbeat sensitively is selected by the proposed channel-selection algorithm. Then, we propose a dynamic smoothing algorithm to extract respiratory rate and heart rate using the selected data. The dynamic smoothing can separate heartbeat signals from respiratory signals with low complexity by dynamically choosing the smooth window, and it is suitable for real-time implementation in low-cost embedded systems. For comparison, wavelet analysis and ensemble empirical mode decomposition (EEMD) are performed in a personal computer (PC). Experimental results show that data collected by piezoelectric ceramic sensors can be used for respiratory-rate and heart-rate detection with high accuracy. In addition, the dynamic smoothing can achieve high accuracy close to wavelet analysis and EEMD, while it has much lower complexity.
CITATION STYLE
Peng, M., Ding, Z., Wang, L., & Cheng, X. (2019). Detection of sleep biosignals using an intelligent mattress based on piezoelectric ceramic sensors†. Sensors (Switzerland), 19(18). https://doi.org/10.3390/s19183843
Mendeley helps you to discover research relevant for your work.