Mass Spectrometry: Principles and Applications in Catalysis

  • Mirodatos C
N/ACitations
Citations of this article
54Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Following the first studies of J.J. Thomson (1912), mass spectrometry has undergone countless improvements. Since 1958, gas chromatography coupled with mass spectrometry has revolutionized the analysis of volatile compounds. Another revolution occurred in the 1980s when the technique became available for the study of non-volatile compounds such as peptides, oligosaccharides, phospholipids, bile salts, etc. From the discoveries of electrospray and matrix-assisted laser desorption in the late 1980s, compounds with molecular masses exceeding several hundred thousands of daltons, such as synthetic polymers, proteins, glycans and polynucleotides, have been analysed by mass spectrometry. From the time of the second edition published in 2001 until now, much progress has been achieved. Several techniques have been improved, others have almost disappeared. New atmospheric pressure desorption ionization sources have been discovered and made available commercially. One completely new instrument, the orbitrap, based on a new mass analyser, has been developed and is now also available commercially. Improved accuracy in low-mass determination, even at low resolution, improvements in sensitivity, better detection limits and more efficient tandem mass spectrometry even on high-molecular-mass compounds are some of the main achievements. We have done our best to include them is this new edition. As the techniques continue to advance, the use of mass spectrometry continues to grow. Many new applications have been developed. The most impressive ones arise in system biology analysis. Starting from the very foundations of mass spectrometry, this book presents all the important techniques developed up to today. It describes many analytical methods based on these techniques and emphasizes their usefulness by numerous examples. The reader will also find the necessary information for the interpretation of data. A series of graduated exercises allows the reader to check his or her understanding of the subject. Numerous references are given for those who wish to go deeper into some subjects. Important Internet addresses are also provided. We hope that this new edition will prove useful to students, teachers and researchers. We would like to thank Professor Jean-Louis Habib Jiwan and Alexander Spote for their friendly hospitality and competent help. We would also like to acknowledge the financial support of the FNRS (Fonds National de la Recherche Scientifique, Brussels). Many colleagues and friends have read the manuscript and their comments have been very helpful. Some of them carried out a thorough reading. They deserve special mention:namely, Magda Claeys, Bruno Domon, Jean-Claude Tabet, and the late François Van Hoof. We also wish to acknowledge the remarkable work done by the scientific editors at John Wiley & Sons. Many useful comments have been published on the first two editions, or sent to the editor or the authors. Those from Steen Ingemann were particularly detailed and constructive. Finally, we would like to thank the Universit´e Catholique de Louvain, the Ludwig Institute for Cancer Research and all our colleagues and friends whose help was invaluable to us.

Cite

CITATION STYLE

APA

Mirodatos, C. (1994). Mass Spectrometry: Principles and Applications in Catalysis (pp. 651–674). https://doi.org/10.1007/978-1-4757-9589-9_23

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free