New high-frequency data collection technologies and machine learning analysis techniques could offer new insights into learning, especially in tasks in which students have ample space to generate unique, personalized artifacts, such as a computer program, a robot, or a solution to an engineering challenge. To date most of the work on learning analytics and educational data mining has focused on online courses or cognitive tutors, in which the tasks are more structured and the entirety of interaction happens in front of a computer. In this paper, I argue that multimodal learning analytics could offer new insights into students' learning trajectories, and present several examples of this work and its educational application. ? 2013 ACM.
CITATION STYLE
Ochoa, X. (2017). Multimodal Learning Analytics. In Handbook of Learning Analytics (pp. 129–141). Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/hla17.011
Mendeley helps you to discover research relevant for your work.