SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer

3Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has emerged as a prominent class of machine learning algorithms in computer vision and has shown successful applications in various medical image analysis tasks. However, deep learning methods applied to neuroimaging have not achieved superior performance in classifying ALS patients from healthy controls due to insignificant structural changes correlated with pathological features. Thus, a critical challenge in deep models is to identify discriminative features from limited training data. To address this challenge, this study introduces a framework called SF2Former, which leverages the power of the vision transformer architecture to distinguish ALS subjects from the control group by exploiting the long-range relationships among image features. Additionally, spatial and frequency domain information is combined to enhance the network's performance, as MRI scans are initially captured in the frequency domain and then converted to the spatial domain. The proposed framework is trained using a series of consecutive coronal slices and utilizes pre-trained weights from ImageNet through transfer learning. Finally, a majority voting scheme is employed on the coronal slices of each subject to generate the final classification decision. The proposed architecture is extensively evaluated with multi-modal neuroimaging data (i.e., T1-weighted, R2*, FLAIR) using two well-organized versions of the Canadian ALS Neuroimaging Consortium (CALSNIC) multi-center datasets. The experimental results demonstrate the superiority of the proposed strategy in terms of classification accuracy compared to several popular deep learning-based techniques.

Cite

CITATION STYLE

APA

Kushol, R., Luk, C. C., Dey, A., Benatar, M., Briemberg, H., Dionne, A., … Yang, Y. H. (2023). SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer. Computerized Medical Imaging and Graphics, 108. https://doi.org/10.1016/j.compmedimag.2023.102279

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free