Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode

28Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In order to replace Pt CE in dye sensitized solar cell (DSSC) with simple and low cost, copper polypyyrol functionalized multiwall carbon nanotubes (Cu-PPy-FWCNTS) nanocomposite CE was fabricated by two step electrodeposition method on the stainless-steel substrate. The surface morphology, electrical conductivity, electrochemical properties of Cu-PPy-FWCNTS nanocomposite CE electrodes were observed by using verity of techniques such as scanning electron microscopy, a four-probe method and electrochemical workstation. The Fourier transform infrared (FTIR) spectroscopy confirms the presence of FMWCNTS into PPy-FMWCNTS nanocomposite and XRD analysis verified the Cu nanostructures had come into being. The cyclic voltammogram and Tafel polarization measurement demonstrated that solution processed Cu-PPy-FWCNTS nanocomposites CE had smaller charge transfer resistance Rct (4.31 Ω cm2) and higher electrocatalytic performance for I3−/I− redox solution. Finally, the photovoltaic efficiency of DSSC assembled with Cu-PPy-FWCNTS nanocomposite CE and Platinized CE were compared. The results revealed that the photovoltaic efficiency of DSSC with Cu-PPy-FWCNTS nanocomposites CE reached (7.1%), which is superior to Platinized CE (6.4%). The higher photovoltaic efficiency of the Cu-PPy-FMWCNTS film is due to copper nanostructures that lead to higher cathodic current density (2.35 mA/cm2). The simple fabrication method, excellent electrocatalytic and photovoltaic properties permit the Cu-PPy-FWCNTS nanocomposites credible alternative CE to save the cost of DSSC.

Cite

CITATION STYLE

APA

Rafique, S., Rashid, I., & Sharif, R. (2021). Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-94404-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free