Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques

11Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Bottle marine debris (BMD) remains one of the most pressing global issues. This study proposes a detection method for BMD using unmanned aerial vehicles (UAV) and machine learning techniques to enhance the efficiency of marine debris studies. The UAVs were operated at three designed sites and at one testing site at twelve fly heights corresponding to 0.12 to 1.54 cm/pixel resolutions. The You Only Look Once version 2 (YOLO v2) object detection algorithm was trained to identify BMD. We added data augmentation and image processing of background removal to optimize BMD detection. The augmentation helped the mean intersection over the union in the training process reach 0.81. Background removal reduced processing time and noise, resulting in greater precision at the testing site. According to the results at all study sites, we found that approximately 0.5 cm/pixel resolution should be a considerable selection for aerial surveys on BMD. At 0.5 cm/pixel, the mean precision, recall rate, and F1-score are 0.94, 0.97, and 0.95, respectively, at the designed sites, and 0.61, 0.86, and 0.72, respectively, at the testing site. Our work contributes to beach debris surveys and optimizes detection, especially with the augmentation step in training data and background removal procedures.

Cite

CITATION STYLE

APA

Tran, T. L. C., Huang, Z. C., Tseng, K. H., & Chou, P. H. (2022). Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques. Drones, 6(12). https://doi.org/10.3390/drones6120401

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free