Acute otitis media, a polymicrobial disease of the middle ear cavity of children, is a significant public health problem worldwide. It is most frequently caused by encapsulated Streptococcus pneumoniae and nontypeable Haemophilus influenzae, although the widespread use of pneumococcal conjugate vaccines is apparently producing an increase in the carriage of nonencapsulated S. pneumoniae. Frequently, pneumococci and H. influenzae live together in the human nasopharynx, forming a self-produced biofilm. Biofilms present a global medical challenge since the inherent antibiotic resistance of their producers demands the use of large doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence. Here, we describe the development of an in vitro nonencapsulated S. pneumoniae-nontypeable H. influenzae biofilm system with polystyrene or glass-bottom plates. Confocal laser scanning microscopy and specific fluorescent labeling of pneumococcal cells with Helix pomatia agglutinin revealed an even distribution of both species within the biofilm. This simple and robust protocol of mixed biofilms was used to test the antimicrobial properties of two well-known antioxidants that are widely used in the clinical setting, i.e., N-acetyl-L-cysteine and cysteamine. This repurposing approach showed the high potency of N-acetyl-Lcysteine and cysteamine against mixed biofilms of nonencapsulated S. pneumoniae and nontypeable H. influenzae. Decades of clinical use mean that these compounds are safe to use, which may accelerate their evaluation in humans.
CITATION STYLE
Domenech, M., & García, E. (2017). N-Acetyl-L-cysteine and cysteamine as new strategies against mixed biofilms of nonencapsulated Streptococcus pneumoniae and nontypeable Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 61(2). https://doi.org/10.1128/AAC.01992-16
Mendeley helps you to discover research relevant for your work.