Sensing the turbulent large-scale motions with their wall signature

36Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This study assesses the capability of extended proper orthogonal decomposition (EPOD) and convolutional neural networks (CNNs) to reconstruct large-scale and very-large-scale motions (LSMs and VLSMs respectively) employing wall-shear-stress measurements in wall-bounded turbulent flows. Both techniques are used to reconstruct the instantaneous LSM evolution in the flow field as a combination of proper orthogonal decomposition (POD) modes, employing a limited set of instantaneous wall-shear-stress measurements. Due to the dominance of nonlinear effects, only CNNs provide satisfying results. Being able to account for nonlinearities in the flow, CNNs are shown to perform significantly better than EPOD in terms of both instantaneous flow-field estimation and turbulent-statistics reconstruction. CNNs are able to provide a more effective reconstruction performance employing more POD modes at larger distances from the wall and employing lower wall-measurement resolutions. Furthermore, the capability of tackling nonlinear features of CNNs results in estimation capabilities that are weakly dependent on the distance from the wall.

Cite

CITATION STYLE

APA

Guëmes, A., Discetti, S., & Ianiro, A. (2019). Sensing the turbulent large-scale motions with their wall signature. Physics of Fluids, 31(12). https://doi.org/10.1063/1.5128053

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free