Ultraviolet (UV) radiation-induced photoaging is one of the contributors to skin aging. UV light triggers oxidative stress, producing a large number of matrix metalloproteinases (MMPs) and degrading the extracellular matrix in skin cells, thereby causing a series of photoaging symptoms. Concentrated growth factor (CGF) is a leukocyte- and platelet-rich fibrin biomaterial that plays a protective role in the occurrence and development of skin photoaging. In the present study, we investigated the underlying mechanism of CGF in the UVA-induced photoaging of human dermal fibroblasts (HDFs). A primary culture of HDFs was isolated from normal human facial skin. The cells were treated with CGF following UVA radiation. Proliferation of cells was detected using MTT assay, followed by measurement of reactive oxygen species (ROS) using immunofluorescence assay and flow cytometry. The mRNA and protein expression levels of P38, c-Jun, and MMP-1 were detected using real-time polymerase chain reaction and Western blot, respectively. CGF was found to improve cell viability by inhibiting the production of ROS and reducing oxidative damage. In addition, there was lower expression of p38 and c-Jun at the mRNA and protein levels following CGF treatment, thus resulting in the inhibition of MMP-1 expression. Our results suggest that CGF could protect HDFs against UVA-induced photoaging by blocking the P38 mitogen-activated protein kinase/activated protein-1 (P38MAPK/AP-1) signaling pathway. These findings provide a new clinical strategy for the prevention of skin photoaging.
CITATION STYLE
Zhang, M., Zhang, T., Tang, Y., Ren, G., Zhang, Y., & Ren, X. (2020). Concentrated growth factor inhibits UVA-induced photoaging in human dermal fibroblasts via the MAPK/AP-1 pathway. Bioscience Reports, 40(7). https://doi.org/10.1042/BSR20193566
Mendeley helps you to discover research relevant for your work.