Mathematical analysis and update of adm1 model for biomethane production by anaerobic digestion

12Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Biomethane is a renewable product that can directly substitute its fossil counterpart, although its synthesis from residual biomasses has some hurdles. Because of the complex nature of both biomasses and the microbial consortia involved, innovative approaches such as mathematical modeling can be deployed to support possible improvements. The goal of this study is two-fold, as we aimed to modify a part of the Anaerobic Digestion Model No. 1 (ADM1), describing biomethane production from activated sludge, matching with its actual microbial nature, and to use the model for identifying relevant parameters to improve biomethane production. Firstly, thermodynamic analysis was performed, highlighting the direct route from glucose to biomethane as the most favorable. Then, by using MATLAB® and Simulink Toolbox, we discovered that the model fails to predict the microbiological behavior of the system. The structure of the ADM1 model was then modified by adding substrate consumption yields in equations describing microbial growth, to better reflect the consortium behavior. The updated model was tested by modifying several parameters: the coefficient of decomposition was identified to increase biomethane production. Approaching mathematical models from a microbiological point of view can lead to further improvement of the models themselves. Furthermore, this work represents additional evidence of the importance of informatics tools, such as bioprocess simulations to foster biomethane role in bioeconomy.

Cite

CITATION STYLE

APA

Bertacchi, S., Ruusunen, M., Sorsa, A., Sirviö, A., & Branduardi, P. (2021). Mathematical analysis and update of adm1 model for biomethane production by anaerobic digestion. Fermentation, 7(4). https://doi.org/10.3390/fermentation7040237

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free